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partitioning of relations is formally known as fragmentation. However, in the. data-’
base literature, the term disjoint fragmentation is used to denote partitioning, and
the term fragmentation refers to either disjoint or nondisjoint fragmentauon.

A distributed database system insulates the user from knowledge uf data frag-
mentation. This characteristic of distributed database systems is callea fragmenta-
tion transparency. However, from our discussions on newworks and data distribu-
tion, we realize that it may not always be possible to access all the data when
communication link and node failures occur. The user may sense that some data is
unavailable and consequently realize that data is partitioned.

To achieve locality of reference and reduced communication and redundancy
costs, data is often fragmented. Fragmentation allows a subset of the relation’s attri-
butes or the subset of the relation’s tuples to be defined at a given site to satisfy local
applications. The idea of data fragmentation is displayed in Figure 15.5 and exambles
are given in Examples 15.3 and 15.7 and Figure E.

Example 15.3 Consider the MUC library system shown in Figure B. It has a m}mber of
branches and maintains a central acquisition, cataloging, and dlsmbutlon
center. A central catalog contains the title and a detailed description of each
item. However, each branch maintains a local catalog and has access t:\th
central catalog, as well as catalogs at other branches. In a manual system,
the index card for items are duplicated at the central site and sent to-each
branch where they are stored in their local catalogs. Access to the central
catalog or the catalog of another branch can only be had by calling on these’
locations. An alternate solution to this problem would be to include in each
index card a list of all the branches at which a copy is maintained, and have
a copy of the entire catalog stored at all branches. In a computerized distrib-
uted database system, the catalog is fragmented and maintained in a data-
base at each branch.

Figure B The MUC library system.
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15.3.1

Fragmentation

A relation R defined on the scheme R can be broken down into the fragments R,
R,, . . ., R, defined on the schemes Ry, Ry, . . ., Ry such that it is always possible
to obtain R from the fragments Ry, Ry, . . ., Ry. The fragmentation could be verti-
cal, horizontal, or mixed, as described below.

Vertical Fragmentation

Vertical fragmentation is the projection of the original relation on different sets of
attributes. Relations may be fragmented by decomposing the scheme of R, such that

R =

R
1

IC s

and
R; = mg; (R), fori=1,2,...,n
The original relation R can be reconstructed by a join of the fragments:
R = R, D<IR,D<. . . DIR,
It should be clear that for the original relation to be reconstructible, either:

1. Forall fragmentsRi i = 1,2, .. ., n), there must exist another fmément R;
G+#j,j=1,2,.. ., n),such that if we represent R; N R; by X, then X is
either a key of R; or of Rj; or

2. 'System-generated TIDs (tuple identifiers) of the original relation must be
duplicated in all fragments. '

Examples 15.4 and 15.5 illustrate these methods of deriving the original relation
from its fragments.

" Example 15.4 Consider the relation EMPLOYEE(Employee#, Name, Department, De-

gree, Phone#, Salary_Rate, Start_Date). This relation can be partitioned
into the vertical fragments’ EMPLOYEE_QUALIFICATION(Employee#,
Name, Degree, Phone#) and EMPLOYEE_PAY(Employee#, Name, Salary
Rate, Start_Date). The fragments are not disjoint because the Employee#
and Name attributes are common in the fragments. If Employee# is a pri-
mary key of the original relation, we can derive the original relation by a
natural join of these fragments, followed by the elimination of the duplicate
Name attribute. W

Example 15.5 Consider the relation MODULE_USE given in Figure C. Two vertical frag-

ments of this relation, MODULE and USES, include the system-supplied
attribute TIDs and could be joined to derive the original relation.

A
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Figure C TIDs in vertical fragmentation.
relation: MODULE_USE
TID MODULE USES
t1 Query processor SORT .
User interface SORT
fragment: MODULE fragment: USES
TID MODULE TID USES
tl Query processor tl SORT
User interface 2 SORT -

TIDs may be used by the DDBMS as a physical pointer ana are not visible to
users. If the TIDs are visible, 4 user may use wem in some manner and this con-
strains the DDBMS from changing the TIDs, for instance, when the data is reorga-
nized. As a result, data independence, a goal of database systems, is compromised.

Note that with fragmentation, duplicate tuples may in reality be part of distinct
tuples of the unfragmented relation. Such duplicate tuples should not be deleted from
a fragment or, alternatively, the TIDs of the deleted tuples should somehow be main-
tained to reconstruct the original tuples. For example, consider the relation and ifs
fragments given in Figure C. It is obvious that if one of the tuples in the fragmeni
USES is deleted, say the tuple with TID t2, a join with the fragment MODULE will
not result in the original relation. The reconstructed relation would lack the fact that
the SORT module is also used by the user interface module. If we include the TIDs
in the fragmented relation, there is no possibility of duplicate tuples. The original
relation can be obtained using a join on the TIDs.

Horizontal Fragmentation

In horizontal fragmentation the tuples ot a relation are assigned to different frag-
ments, such that

where each R; + ¢, (R) each C; is some selection condition, and R = R, = R, =

.. =R,

Example 15.6 In Figure D we:graphically show-a relation that is fragmented into a numoer
' of disjoint horrzohtal fragments, which are replicated and stored at a number
of sites. The ongmal relation could be obtained by a union operation.
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| Figure D Replications of disjoint horizontal fragments.
Site 1
Site 2
relatio
- B
Site 4
- [ ]
e )
Figure 15.6 Data fragmentation tree.
Relation R
ntx(R) ny(R) Gz-,(R) Ox=x(R)

PN N

Oa=a(My(R) Opp(My(R) Mw(Oxer(R)) Ty(Ox-4(R))
Mixed Fragmentation

Horizontal (or verticai) rragmentation of a relation, followed by further, vertical (or
horizontal) fragmentation of some of the fragments, is called mixed fragmentation.
The original relation is obtained by a combination of join and union operations.
Figure 15.6 illustrates a data fragmentation tree for a mixed fragmentation.

Example 15.7 The BOOK relation in the library database can be made up of the following
attributes. Book#, Call#, Copy#, F irst_Author_Name, Title, Volume, .
Publisher, Place_of_Publication, Date, Binding, Size, Number_of.Pagé‘s,
Date_Acquired, Branch, and Cost. Note that the attribute Book# is unique
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Figure E Mixed fragmentation.

BOOK relation

Horizontal subsets of vertical fragments

Branch = Saugus

Branch =Lynn

Branch = Revere

and forms a primary key of the relation. The attributes Call# and Copy#
also form a key of the relation. The portion of this relation of interest to the
general public is limited to Call#, Copy#, First_Author_Name, Title, and
Branch; it forms a vertical fragment of the BOOK relation: The collection
at a given branch forms the horizontal subset of this vertical fragment. This
is illustrated graphically in Figure E. &

Disjoint Fragmentation

In disjoint vertical fragl;lentation there are either no common attributes between
any two vertical fragments or one fragment contains all the attributes of another, i.e.,
RN R; = DorR; for all i and j. ' disjoint horizontal fragmentation there are
either no common tuples in any two fragments or one fragment contains all the tuples
contained in another fragment, i.c., Ry Ry = { } or R, for all i and j:
There is no partial overlap between the fragments. Replica 5 of a complete
at are allowed in disjoint fragmentation. We point out that in disjoint vertical
fragmentation with Ry N R; = J, it is not possible to reconstruct the original rela-
tion unless each fragment contains the system generated TID.

Nondisioint Fragmentation
In nondisjoint horizontal fragmentation, a tuple may be assigned to more than one

fragment. With nondisjoint vertical fragmentation, an attribute may be assigned to
more than one fragment. This differs from teplication. Replicate fragiucnts are exact
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15.4

modification of attributes. In distributed databases, certain statistics pertaining to the
characteristics of the data play an important role in determining access and query
evaluation plans. These statistics, maintained in the system catalog, are likely to
change regularly, entailing catalog updates. Some typical approaches to catalog dis-
tribution and maintenance problems are discussed below.

The R* system uses a distributed catalog. Local catalogs keep information on
locally stored objects, including any fragments and replicates. The catalog at the
birth_site of an object (site at which the object was first created) maintains the
current storage sites of that object. Object movement causes this information to be
updated. This scheme maintains complete site autonomy and is a type 1 scheme.

Distributed INGRES differentiates between local and global relations. Only
global relations are accessible from all sites. A catalog of all global relations, the so-
called global catalog, is maintained at all sites. The creation of a global relation
requires its name and location to be broadcast to all sites. This is a type 2 scheme.

In the SDD-1 system, the catalog is a single relation that can be fragmented and
replicated, allowing the entries to be distributed at data module sites. It is possible
for local objects to have their catalog entries at a remote site. Consequently data
definition operations may be nonlocal. This is a type 3 scheme. However, a fully
replicated locator catalog is required at each site to keep track of the database cata-
log. A locator catalog contains information on the global scheme and details con-
cerning fragmentation and replication.

Catalog details such as local-to-global name mappings, physical details concern-
ing file organization and access methods, general and integrity constraint details, and
database statistics could be stored locally. A site needing remote catalog information
requests such information and stores it for later use. This scheme is called caching
the remote catalog. It is not a replication of the remote catalog insofar as no attemnpt
is made to maintain the consistency between the cached catalog and the remote one.
The two are identical at the time of caching and this is indicated by both having
identical version numbers. However, over time the remote catalog could be modified
and its version number could change. This inconsistency is revealed when a query
processed with a cached catalog is executed. At that time it is discovered that an out-
of-date catalog has been used. This causes the qilery plan to be abandoned and the
updated catalog to be transmitted to and cached at the site in question. The query is
then reprocessed with the up-do-date remote catalog. SSD-1 and Distributed INGRES
use this scheme of remote catalog caching.

Object Naming

In a distributed database system, we want to share data but we don’t want too many
restrictions on the user’s choice of names. The system can adopt a global naming
scheme such that all names are unique throughout the system. Two sites or users

- cannot use.the same name for different data objects. This requirement for unique

names can cause problems when a new site with an existing database is being inte-
grated into the DDBMS. A unique name criterion would entail renaming objects in
the database to be integrated as well as in the application programs that access them.

A drawback of the global name requirement is the loss of local autonomy, which al-
lows users to choose appropriate local names even for global data items. Another deter- -
rent is the bottleneck that would be created with the use of a single global name server,
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which has to be consulted for each name that 1s 0 be ntroduced in the database. The
reliability of the system would also be compromised, since the entire system wouid
be dependent on a single name server site for resolving naming conflicts.

For these reasons we stay away-from a global naming scheme or the requifement
that users choose systemwide unique names. Lifting such restrictions make it possible
for different names to be used for the same data object, or the same name for differ-
ent data objects. Although objects may not have unique names in the database, the
DDBMS is required to differentiate between the objects.

Names used in queries or application programs are chosen by the end-users. To
keep programming and query specification simple and invariant, regardless of the site
from which they are executed, the network details must be transparent to the user.
For instance, user A can enter the same query at site 1 or site 2 and anticipate the
same results. Names selected by users have to be converted into system-unique
names. This is done by consulting the local and/or the remote site catalog.

System R* maps end-user names (called print names) to internal systemwide
names (SWNs). An SWN has the form:

creator@c_reator_site.object_name@birth__site

The birth_site is the site-at which the object was first created, and because site
names are chosen to be unique, an SWN is unique. An object X that was created in
Washington by user John will have the SWN of:

. John@Washington. X @Washington.

The same user could create, from Washington, an object named X at Montreal and
this would receive the SWN of:

John@Washington. X@Montreal.

Note that the second data item is distinct from the first one. Also note that the
user name is local; John@Washington is distinct from John@Montreal. In additior
the name of an object includes its birth_site but this need not be its actual location.
The data item could be moved to another site and be replicated at a number of sites.

_To allow users to use print names, which are names of their choice for global
data items, System R* creates these print names as synonyms for the corresponding
SWNs. The synonyms are stored in the local catalog. The synonym-mapping scheme
allows different print names for the same object and different objects having the same
print names. The local catalog entry for an object includes its SWN, among other
things. To find the catalog entry for an object, search the local catalog, followed by
the birth_site catalog, then the site indicated by the birth_site catalog as currently
holding the object.

Internal names can also be used to differentiate between fragments and replicates.
If each fragment and replicate is assigned a number, these numbers can be concatenated
with the name@birth_site to distinguish the different fragments or copies.

Distributed Query Processing

A query in a DDBMS may require data from more than one site. The transmission
of this data entails communication costs. If some of the query operations can be
executed at the site of the data, they may be performed in parallel. Section 15.5.1
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Figure F Obtaining a join using a semijoin.
STUDENT REGISTRATION X = Wsuae
(REGISTRA-
Std# Std_Name Std# Course# TION)
1234567 Jim 1234567 COMP353 Std#
7654321 Jane 1234567 COMP443 j
2345678 San 2345678 COMP201 1234567
8765432 Ram 8765432 COMP353 2345678
3920137 John 8765432 COMP441 8765432
4729435 Ron 7654321 COMP441 7654321
3927942 Aron Ste 2
1934681 Rodney !
8520183 Maria
Site 1
Y = STUDENT DX STUDENT D<1 REGISTRATION =
REGISTRATION Y <1 REGISTRATION
= STUDENT D<1 X
: Std# Course# Std_Name
Std# Std_Name »
1234567 COMP353 Jim
1234567 Jim 1234567 COMP443 Jim
7654321 Jane 2345678 COMP201 San
- 2345678 San 8765432 COMP353 Ram
8765432 Ram 8765432 COMP441 Ram
7654321 COMP441 Jane

prepared, which involved joining the two relations. The join could be per-
formed ‘by first projecting REGISTRATION on Std# and transmitting the
result, 7,54 (REGISTRATION), to site 1. At site 1, we select those tuples
of STUDENT that have the same value for the attribute Std# as a tuple in
" .qe (REGISTRATION) by ‘a join. The entire operation of first projecting
the REGISTRATION and then performing this join is called a semijoin and
denoted by D<. However, we do not obtain the desired result after the B<
operation. The semijoin operation reduces the number of tuples of STU-
DENT that have to be transmitted to site 2. The final result is obtained by a
join of the reduced STUDENT relation and REGISTRATION. These steps
are illustrated in Figure F.. The class list can be obtained by sorting the
resulting relation on Course#.
Note: It may be worthwhile to compute Y = STUDENT D< REGISTRA-
TION and Z = REGISTRATION D< STUDENT and then obtain the final
result by XD<JZ. B
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To reduce the communication cost in performing a join, the semijoin (D<) op-
erator has been introduced. Let P be the result of the semijoin:

P=RDS

Then P represents the set of tupics of R that join with some tuple(s) in S. P does not
contain tuples of R that do not join with any tuple in S, thus P represents the reduced
R that can be transmitted to a site of S for a join with it. If the join of R and S is
highly selective, the size of P would only be a small proportion of the size of R. To
get the join of R and S, we now join P with S, i.e.,

T=PDJS
RDP<S)DIS

= (SD<R)PJIR

= R S)PI(SDP<R)

The semijoin is a reduction operator; R D< S can be read as R semijoin S or
the reduction of R by S. Note that the semijoin operation is not associative. In Ex-
ample 15.9, STUDENT D< REGISTRATION is not the same as REGISTRATION
< STUDENT. The former produces a reduction in the number of tuples of STU-
DENT: however, the latter is the same relation as REGISTRATION!

In distributed query processing, communication cost reduction is one of the ob-
jectives. The semijoin operation can be introduced to reduce the cardinality of large
relations that are to be transmitted. Reduction in the number of tuples reduces the
number and total size of the transmission and the total cost of communication.

It is wrong to assume that if [R| > [S|, then R should be reduced, as we shall
see below.

To compute the join of R and S, we first compute the semijoin and then the join
of one of the reduced relations with the other. The evaluation of the semijoin R D<
S requires that we transmit wrns(S) to the site of R. We do not need to transmit the
whole of S. Let us refer to this projection of S and S’ and the size of the projected
Sass'.

We use S’ to reduce R by computing R D< S'. Let us refer to the reduced R as
R’ and the size of reduced R as r’. R’ is then transmitted to the site of S to compute
the join (R'D<1 S). The communication cost incurred is:

2xcyg+C*(s' + 1) .

Without the semijoin, we would have sent the whole of R to the site of S and
the cost would have been:

co + ¢ * R * R,
Therefore, the benefit of using the semijoin is:
c*(Rj*R; —s" — 1) = ¢
If the benefit is greater than zero, we prefer the semijoin over the traditional
Jom.The decision as to whether to reduce R or S can only be made after comparing
the benefit of reducing R with that of reducing S. (We can also choose to reduce

both.) We have already calculated the cost of reducing R; now let us do the same
for S. As before, let us represent the size of wrns(R) as r” and the size of the reduced
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As we discussed in Chapter 12, transactions are said to possess certain proper-
ties:
® Consistency: A transaction transforms a consistent database state into another
consistent database state.

® Atomicity: All operations of the transaction are performed or none are
performed. .

® Serializability: If several transactions are executed concurrently, the result must
be the same as if they were executed serially in some order.

® Durability: Once a transaction has been committed the results are guaranteed
not to be lost.

o Isolation: An incomplete transaction cannot reveal its results.
These properties of a transaction are assured by using certain concurrency con-
trol and recovery techniques. Chapters 11 and 12 covered such techniques for cen-

tralized DBMSs. In the next two sections we briefly cover some techniques used in
distributed DBMSs.

Concurrency Control

15.7.1

Concurrency control in a DDBMS has to take into account the existence of fragmen-
tation and replication of data. Variations of the schemes used in centralized DBMSs
are used in distributed concurrency control. A number of such schemes based on the
locking and timestamp approaches are presented in this section.

Locking is the simiplest concurrency control method. Locking enforces serial
access to data. In centralized DBMSs, the lock requests go to a single lock manager,
which can arbitrate any conflicts. In distributed systems, a centralized lock manager
is not desirable due to the bottlenecks created at the central site. A centralized lock
manager at a single site, furthermore, is vulnerable to failure, leading to the disrup-
tion of the entire system.

The locking scheme must be well formed. In other words, no transactions can
access (read or write) a data item that it has not locked.

Distributed Locking

As discussed in Chapter 12, the different locking types can be applied to distributed
locking. A centralized lock manager at a single site is relatively simple to implement.
Here a transaction sends a message to the lock manager site requesting appropriate
locks on soecific data items. If the request for the locks could be granted immedi- .
ately, the lock manager replies granting the request. If the request is incompatible
with the current state of locking of the requested data items, the request is delayed.
In the case of a read lock request, the data.item from any site containing a copy of
it, is locked in the share mode and then read. In the case of a write, all copies of the
data items have to be modified and are locked in the exclusive mode. With a cen-
tralized lock manager, the detection of deadlock is straightforward, requiring the
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generation of a global wait-for graph (GWFG). The disadvantage of this scheme, in
addition to the bottlenecks it creates, is the disruption of the entire system in case of
the failure of the centralized lock manager site.

In the distributed method each lock manager is responsible for locking certain
data items. The problem this scheme creates, however, is that of detection of dead-
locks. Since lock requests are directed to a number of different sites, the nonexist-
ence of a cycle in the local wait-for graph at each lock manager is not sufficient to
conclude the absence of a deadlock. It is still necessary to generate a global wait-
for graph to detect a deadlock.

Example 15.11 illustrates the type of locking requlred in a distributed system
where data is fragmented as well as replicated.

Example 15.11 Consider transactions T and T, of Figure G. Suppose the data is replicated
and three copies of A are stored at sites S, S,, and S;. To execute these
transactions, each spawns three local subtransactions, Ts;, Tis2, Tis3, and
Tasi» Tasa, Tass to be executed at sites S, S,, and S;, respectively. A pos-
sible execution schedule for these transactions is given in Figure H. As we
see from Figure H, the final result obtained is incorrect because the schedule
is not serializable. If each subtransaction of T, had run to completion before
those of transaction T,, the values in each replicate of A would have been
200. If each subtransaction of T, had run to completion before those of
Figure G Two modifying transactions.

Transaction T, Transaction T,
Lockx(A) Lockx(A)
= 100 A= 200
Write(A) Write(A)
Unlock(A) Unlock(A)
Figure H A schedule for the transactions in Figure G.
site S, site S, site S3
Trans- Trans- Trans- Trans- Trans- Trans-
action action action action action action
Time Tist Tass Tis: Tas: Tiss Tasa
t; - Lockx(A) Lockx(A) Lockx(A)
t, A:= 100 A := 200 A:= 100
t;  Write(A) Write(A) Write(A)
t¢  Unlock(A) Unlock(A) Unlock(A)
ts Leckx(A) Lockx(A) Lockx(A)
te = 100 1= 200 A := 100
4 Write(A) Write(A) Write(A)
g Unloek(A) Unlock(A) Unlock(A)
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Figure J ~ A schedule for the transactions of Figure I.
site S; site S;
Transaction Transaction Transaction Transaction
Time T Tas) Tis2 Tas
t; Lockx(A) Lockx(B)
t, A= 100 B := 2000
t; Write(A) Write(B)
ty Unlock(A) Unlock(B)
s ot Lockx(A) Lockx(B)
te : . A = 200 B := 1000
ty Write(A) Write(B)
ts Unlock(A) Unlock(B)

respectively, to be executed at sites S, and S,. A possible execution sched-
ule for these transactions is given in Figure J. As we see from Figure J, the
final result obtained is incorrect since the schedule is not serializable. If
transaction T, had run to completion before transaction T, the values of A
and B would have been 200 and 2000, respectively. Had transaction T, run
to completion before transaction T;, A and B would have the values 100
and 1000, respectively. W

As in centralized two-phase locking, serializability requires that-the locking in
the distributed system also be two-phase. Recall that the two-phase locking scheme
is required to-have growing and shrinking phases. All lock requests made by a trans-
action or any of its subtransactions should be made in the growing phase and released
in ‘the shrinking phrase. Whenever a transaction issues an unlock instruction the
shrinking phase starts indicating that all required locks are obtained. Where data is
replicated, all subtransactions of a transaction that would modify the replicated data
item would-have to observe the two-phase locking protocol. Therefore, we cannot
have one subtransaction release a lock and subsequently have another subtransaction
request another lock. This requires that each subtransaction of a transaction notify all
other subtransactions that it has acquired all its locks. The shrinking phase can start
once all subtransactions have acquired all their locks.

In establishing the fact that all subtransactions have finished their growing
phase, the number of messages involved is high. The possibility of failure in nodes
and communication links and that of a rollback of some subtransactions in case of
failure of others to complete normally indicates that the unlocking operations should
be delayed until the distributed commit point of all subtransactions.

i The distributed commit requires the exchange of a number of messages between

‘the sites of subtransactions. It is done using a two-phase commit protocol discussed
in Section 15.8.

'l“lmestamp—Baspd Cbncqrrency Control

Locking schemes suffer from two serious disadvantages: deadlock and low level of
concurrency. Timestamp methods have been advocated as an alternative to locking.
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The timestamp methods discussed in Chapter 12 can be extended to the distributed
case. As in the case of the centralized timestamp methods, each copy of a data item
in the distributed approach contains two timestamp values: the read timestamp and
the write timestamp. Also, each transaction in the system is assigned a timestamp
value that determines its serializability order. A transaction T with a timestamp value
of t ensures that it does not read a value from the future (that is, the write timestamp
of the data item must not be greater than value t) nor write a value that was already
read by a younger transaction (i.e., the read timestamp of the data item must not be
greater than value t). If the write timestamp of the data item to be read is greater
than value t (written by a younger transaction) or if the read timestamp of the data
item to be written is greater than value t (read by a younger transaction), transaction
T must be aborted and restarted. If transaction T attempts to write a data item but
finds that the read timestamp of the data item is less than t (an older transaction had
read the value) and the write timestamp of the data item is greater than t (a younger
transaction had already written a new value), transaction T is not required to be
aborted. However, it does not update the data item (it was too slow to change the
value of the data item). When more than one copy of a data item exists, a new value
must be written in all of its copies. In this case, the two-phase commit protocol
discussed in Section 15.8 must be used to make the new value permanent.

As in the centralized database system, a number of different timestamp-based
schemes can be used. In these schemes a timestamp is used to associate some value
with a transaction and give it an order in the set of all transactions being executed.
In the serial execution of transactions, time plays an important role and timestamping
seems to be the natural solution to the serializability problem.

If a system assigns a unique timestamp to a transaction, the timestamp identifies
the transaction. The generation of timestamps in a centralized system requires the
use of some monotonically increasing numbers. In distributed systems, each site gen-
erates a local timestamp and concatenates it with the site identifier. If the local
timestamp is unique, its concatenation with the unique site identifier would make the
(global) timestamp unique across the network. The site identiffier must be the least
significant digits of the timestamp so that the events can be ordered.according to their
occurrence and not their location, as illustrated in Example 15.13.

Example 15.13 | Let two events be assigned the timestamps 200100 and 100200, where the
first three digits of the timestamp identify the site and the last three digits
the time at which the event occurred. Now even though the event with ti-
mestamp 100200 occurred later than the event with timestamp 200100, the
timestamp comparison states otherwise. W

The local timestamp can be generated by some local clock or counter. In the
event a counter is used, a relatively busy site would rapidly outrun slower sites. The
local clocks at different sites can also get out of step. These local timestamp-gener-
ating schemes can be kept fairly well synchronized by including the timestamp in the
messages sent between sites. On receiving a message, a site compares its clock or
counter with the timestamp contained in the message. If it finds its clock or counter
to be slower, it sets it to some value greater than the message timestamp. In this
way, an inactive site’s counter or a slower clock will become synchronized with the
others at the first message interaction with another site.
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readiness to commit or avort. In the decision phase, the decision as to whether all
subtransactions should commit or abort is made and carried out. The transactions at
a site interact with the transaction manager of the site, cooperating in the exchange
of messages.

It is more convenient to use the process concept rather than the transaction
concept in discussing the two-phase commit and deadlocks. Just like a transaction, a
process is capable of requesting data items and releasing them. However, they have
a better knowledge of their environment, including knowledge about the identity of
the processes that are blocking them. The pseudocode for the processes at the partic-
ipant and coordinator sites is given below. Note that part of the code belongs to the
transaction manager (TM) and the remaining to the subtransactions or the coordi-
nator.

The coordinator process starts by spawning a number, n, of subtransactions.
Some of these would be at remote sites and others could be at the same site as the
coordinator. The only difference is that a subtransaction at the same site does not
have to communicate via the network. These subtransactions are run along with the
respective TM as participant processes at a number of sites.

Participant Process

begin
acquire locks and make local changes
if normal end
-then status := okay to commit
else status : = should abort;
set timeout;
while (not request from coordinator for voti.2 or not timeout)
do {nothing}; -
if timeout
then write recovery log, release all locks, and abort
if request from coordinator for voting
then if status : = should abort
then begin
send abort to coordinator
write status on recovery log, release all locks, and abort
end;
else begin {status : = okay to commit}
send ready to commit, write status on recovery log
set timeout
while (not second_signal from coordinator or not
timeout)
do nothing;
if receive commit from coordinator
then write recovery log, commit,
release all locks, and send
acknowledge to coordinator
if receive abort from coordinator
then write recovery log, release all locks,
abort, and send acknowledge to coordinator
if timeout {blocked}
then begin
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send SOS_second_signal and wait for response
activate recovery

end
end
end
Coordinator Process
begin

spawn n subtransactions
write into recovery log request for voting, send to all
subtransactions request for voting
messages : = 0;
abortall : = false;
set timeout;
while (messages # n or not timeout or not abortall)
do begin
if receive ready to commit
then messages : = messages + 1;
if recéive abort
then abortall : = true;
end;
if timeout or abortall
then begin
second_signal : = abort
write global abort in log
end
else begin _
second_signal : = commit
write global commit in log
end;
send second_signal to all subtransactions;
set timeout;
acknowledge : = 0;
while (acknowledge # n or not timeout)
do begin
if receive acknowledge from participant
then acknowledge : = acknowledge + 1;
end;
if timeout and acknowledge # n
then spawn SOS (second_signal) response process
else write transaction complete in log
end;

When the participant processes execute, they know whether the tasks assigned
to them were completed successfully or not. If successful, they are willing to com-
mit, otherwise they have to abort. Recall that the assigned database update is done
only on a copy of the data items in each process’s own workspace. These participant
processes wait for a voting request from the coordinator process. If such a request is
not received by a participant process, after a predetermined time period (timeout) it
aborts after writing an appropriate recovery log. No changes are made to any data
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items in the database. If a request for voting is received before timeout, the partici-
pant process sends the appropriate status signal (okay to commit or should abort) to
the coordinator process. On receipt of okay to commit signals from all the participant
processes, the coordinator process sends a second signal to the participants to com-
mit. On receipt of this commit signal, the participant process writes appropriate re-
covery log and commit markers onto stable storage at its site. Following this, it
makes the changes permanent in the database.

If a participant .process does not receive the second signal within a predeter-
mined time period, it is said to be blocked. This could happen if the site goes down
and then the recovery operation restores it and finds that the second signal was not
received before the crash. A blocked participant process sends out an SOS signal,
which is responded to by an SOS process. Such an SOS process could have been
spawned by the coordinator process to help in the recovery of any site that failed
after the vote was taken to commit or abort, but before the site could actually commit
or abort. The SOS signal would also be emitted by a participant process if it did not
receive the second signal (to commit or abort) from the coordinator, the signal being
lost in the network.

A participant process that does not receive a request from the coordinator pro-
cess for voting within a predefined time period will timeout. Timeouts result in the
participant process having to write the recovery log, release all locks, and abort. In
case the request for a voting message from the coordinator was lost, the coordinator
would not receive any signal from such aborted participant processes. The coordina-
tor process timeouts and therefore aborts all the other participant processes.

Recovery with Two-Phase Commit

The recovery log, in addition to the type of information indicated in the centralized
case, includes the log of the messages transmitted between sites. Such a record would
enable the recovery system to decide, when the site is reconnected to the network,
on the extent of the site’s interaction with the rest of the system. The recovery system
would also be able to determine the fate of the subtransactions running at the site. It
can then determine which subtransactions were committed, aborted, or blocked. Re-
garding the committed subtransactions, the recovery system would ensure that the
changes are reflected in the database at the site. In the case of aborted transactions,
any partial updates would be undone. As for the transactions that were blocked, an
SOS signal would be sent to determine whether it should be committed or aborted.
Communication link failures in certain cases can result in the database system
becoming partitioned. Each of the partitioned systems could operate by marking the
sites in the other partitions as being down. A moment’s thought should tell us that
there may be no possibility of a smooth recovery from such a partitioning. In this
case, the complete system has to be restarted from the period before the partitioning
occurred with a manual assist to recover subsequent database modifications.

Site Recovery

When a failed site resumes operation, it consults the recovery log to find the trans-
actions that were active at the time of the failure. For strictly local transactions, -



15.8  Distributed Commitment and Recovery 699

recovery actions similar to a centralized database requiring a simple undo or redo
would be called for. Global transactions would be of two types: coordinator or par-
‘ticipant.

Regarding all participant type transactions, if the log indicated that it had not
sent the status message to the coordinator, then the latter would have aborted all
subtransactions. The recovery operation would ensure that such participant trans-
actions be aborted and no changes be reflected by such transactions in the database.
Suppose the log for a participant type transaction indicates that it send an okay to
commit status to the coordinator. This means that the global transaction could have
been either committed or aborted. The recovery operation would ensure that the par-
ticipant transaction, on restart, would send a SOS message to learn its fate from the
SOS process. Once it receives the signal either to commit or abort, the recovery
process performs a redo or undo operation. In the case of a participant for which the
log indicates the receipt of a second signal from the coordinator (to commit or abort),
the recovery process can take appropriate action and ensure that an acknowledge
signal be sent to the coordinator. '

For a coordinating transaction at the failed site, the recovery process examines
the log to determine its status. If no request for a voting message was sent before the
site failure, all participants would have aborted, whereupon the coordinating trans-
action can be aborted as well. If the coordinator sent a request for voting before the
crash, the recovery process must retransmit this request for voting. Even though the
pseudocode of the participant processes given above does not indicate this, they
should treat the second request for voting as the first and proceed as if this were the
first request for voting. The global transaction can then be completed as if nothing
had happened. If the site failed after the coordinator sent the second signal for com-
mit or abort, the recovery process would entail resending this signal. Participant sites
that received this signal and acted accordingly would treat this as a repeat message,
ensure that appropriate actions were taken (from their recovery logs), and send the
required acknowledge signal. Participants that did not receive this second signal
would be blocked and attempt to recover via SOS. The coordinator would not
receive acknowledgement from these participants and therefore would spawn the
SOS process, which would respond to these SOS signals and conclude the global
transaction.

If the site failed after the coordinator wrote a complete transaction marker in the
log, no further actions would be called for.

Lost Message

The type -of recovery operation to be performed depends on the message that was
lost. If the request to vote from the coordinator is lost, the participant would abort,
which would eventually lead to the abortion of the global transaction. If the status
message from any one of the participants is lost, the coordinator would timeout and
abort the global transaction, including all the participant transactions. Should the
second signal be lost, a participant would timeout and attempt a recovery via the
SOS message. In the event that one of the acknowledge messages is lost, the coor-
dinator would spawn the SOS response process. The coordinator would not know if
the transaction is complete. An alternative approach is to have the coordinator send
a request to the participants to retransmit the acknowledgements.
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Suppose the failure of the communication link occurs in such a way that a subset of
the participant sites are partitioned without a coordinator. In this case, as far as the
coordinator is concerned, this is equivalent to the failure of a number of participant
sites. If the failure occurs before the partitioned participants were sent the voting
message, the coordinator would have aborted the global transaction, including all
nonpartitioned subtransactions. The partitioned participants would also abort after a
timeout. If the failure occurs after the participants have reported their status, the
coordinator would have decided either to commit or abort. The partitioned sites could
recover, on reconnection, by sending an SOS.

Deadlocks in Distributed Systems

Example 15.15

As in the case of a centralized system, deadlocks can occur in a distributed system,
as illustrated in Example 15.15.

Consider the transactions of Figure L, where data item A is resident at site
S, and data item B is resident at site S;. The schedule for the execution of
the transactions is given in Figure M. The transactions are using two-phase

Figure L Two modifying transactions.

Transaction T, Transaction T,

Lockx(A) Lockx(B)
Read(A) Read(B)
A:=A-100 B:=B*1.1
Write(A) Write(B)
Lockx(B) . Lockx(A)
Read(B) Read(A)
B:=B + 100 A:=A*1l1
Write(B) Write(A)
Unlock(A) Unlock(B)
Unlock(B) Unlock(A)
Figure M A schedule for the transactions in Figure L.
site S 1 site 82
Transaction Transaction Transaction Transaction
Step Tys Tasi Tasa Tis2
s; Lockx(A) Lockx(B)
s; Read(A) Read(B)
s3 A:=A-100 B:=B*1.1
s, Write(A) Write(B)
Ss Lockx(A) Lockx(B)




